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Abstract

The ratio of static to cyclic fatigue life, or 'h ratio', was obtained numerically for an indentation flaw system subjected to
sinusoidal loading conditions. Emphasis was placed on developing a simple, quick lifetime prediction tool. The solution for the
h ratio was compared with experimental static and cyclic fatigue data obtained from as-indented 96 wt.% alumina specimens tested
in room-temperature distilled water.

Keywords: Cyclic fatigue; Static fatigue; Indentation-induced flaw:, Ceramics

I. Introduction

For glass and ceramic materials which have slow crack

growth (stress corrosion) as the unique, time-dependent

failure mechanism, it is possible to predict the fatigue life
under one loading condition from another. Prediction of

cyclic fatigue lifetime from static lifetime for Griffith flaw

system can be done analytically by using the ratio of

static fatigue to cyclic fatigue life, introduced by Evans

and Fuller [1]. In the case of the indentation flaw system,

the solution requires a numerical approach since an

additional driving force appears in the net stress intensity
factor. This term is attributed to residual contact stress

produced by the elastic/plastic deformation of indenta-

tion [2]. Analyses of dynamic and static fatigue of the

indentation flaw system were carried out previously for

both postthreshold [3,4] and subthreshold [5] indentation

flaws. However, no general solution for the cyclic fatigue

of such a flaw system has been found, although some

cyclic fatigue data on ceramic specimens containing
indentation cracks exist [6 9].

* Corresponding author. Address correspondence to: NASA Senior
Resident Research Associate, Lewis Research ('enter, Cleveland, OH
44135, USA.

The purpose of this study is to analyze cyclic fatigue

of the indentation flaw system under sinusoidal loading

conditions so that lifetime prediction from one fatigue

condition to another is readily feasible. For this purpose,

the complete solution of the ratio of static to cyclic
fatigue life was obtained numerically in conjunction with

fatigue parameter (n) and stress ratio iR ratio). The

solution was compared with experimental data that were

obtained from static and cyclic fatigue testing of indented

alumina specimens in room-temperature distilled water.

The analysis was carried out for material exhibiting a flat

R curve and a power-law crack propagation as a delayed
failure mechanism.

2. Analysis

In many cases slow crack growth of glass and ceramic

materials under Mode I loading conditions is described

by the following empirical, power-law relation [4]

da A_ K, ]" (I)
t_= d7 = LK,,,]

where v, a, and t are crack velocity, crack size, and time,

respectively. A and n are the fatigue parameters which

depend on material and environment. K_ is the

0921-5093/96,:'$15.00,*_.1996 Elsevier Science S.A. All rights reserved
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Mode I stress intensity factor, and K w is the Mode I

critical stress intensity factor or fracture toughness of the
material with a flat R curve.

2.1. Natural flaws

In static fatigue testing a constant applied stress (a) is

employed. Noting that n > 10 for most glass and ceram-

ics, one can derive the following static fatigue equation

[10l

tfs = B S_' 2or " (2)

where tfs is the time to failure, S, is the inert strength, and

B is the parameter associated with fracture toughness,

crack geometry and fatigue parameters.

In cyclic fatigue testing a time-varying, periodic stress
(a(t)) is applied. The time to failure (trc) in cyclic fatigue

can be expressed as [1]

!
.... (3)

lfc = BSi 20 max _1 [f(t)]" dt

T

where ar,ax is the maximum applied stress, f(t) is a

periodic function defined as a(t) = O'mar,f(/) with a range

of 0 <f(t) < 1, and r is the period. The ratio of static

fatigue to cyclic fatigue life, h, with a condition of a in
static loading equal to O'max in cyclic loading (a = O'max)

can be obtained from Eqs. (2) and (3)

h - tfs 1 ['_-- [f(t)]" dt (4)
/re r Jo

Sinusoidal loading is the most common and popular

wave form used in cyclic fatigue testing. The periodic

function fit) for a sinusoidal wave is expressed as

f(t) = [(1 + R)/2 + [(1 - R)/2]sincot], where R is the stress

(or load) ratio, defined as R = amin/_rmax with amin being

the minimum applied stress, co is the angular velocity. Eq.
(4) can be solved either analytically or numerically for
the sinusoidal wave. The h ratio for any other periodic

loading wave form such as trapezoidal, triangular or

square can be solved analytically with a straightforward

procedure [1,11]. Eq. (4) was solved analytically for a

sinusoidal wave by using the series expansion technique
of Evans and Fuller [1]. Their analytical solution is

expressed as

....2 [ n, 1F 1-R 12k(l+R']"
h=k_oL(n-2_)!(k!)2JLZ(l-+--Ri j \-5--/ (5)

Eq. (5) is still complicated to solve and valid only for

integer values of n. Therefore, it is desirable to solve Eq.

(4) numerically to cover any integer or real value of n for

a full range of R = 0-1.0, even though some limited data

on the h ratio exist [1,12].
Fig. 1 shows the results of the numerical solution of

Eq. (4) as a function of n for R ratios from R = 0 to
R = 1.0. If log h is treated as a linear function of log n,

coefficients of correlation of rcoer > 0.9966 result. Thus it

.... I ...... I

R=IO

0

0.1

(S[NUSOIDAL WAVE) _'_

/I

lO 100

FATIGUE PARAMETER, n

Fig. I. Numerical solution of the h ratio as a function of fatigue

parameter (n) for different levels of R ratios with the natural flaw

system. Each line represents a best-fit regression line.

is possible to obtain an approximate (but accurate)

relation between log h and log n for a given R ratio by

using the regression analysis

log h = c_ log n + fl (6)

where _ and fl are the regression coefficients.
Table 1 shows the regression coefficients _ and ft. For

n > 10, the maximum error in h ratio, as compared with

the exact solution, was 1.0% for R = 0 to 0.7, and 4.5 %

for R = 0.8 to 0.9. Therefore, the table gives a convenient

and accurate means of determining the h ratio for a

natural flaw system for any given value of n, either integer

or real. The complication of a lack of a simple analytical

solution to Eq. (5) for real numbers can be eliminated

with Eq. (6) and Table 1.

2.2. Indentation flaws

Because of the residual contact stress produced by

elastic/plastic indentation deformation [2], an addi-

Table 1

Regression coefficients of the h ratio (Eq. (6)) for natural and

indentation flaw systems

Natural flaws Indentation flaws

0.0 - 0.4939 - 0.2607 --

0.1 -0.4955 -0.2348 -0.4856

0.2 -0.4976 -0.2051 -0.4885

0.3 -0.5005 -0.1703 -0.4925

0.4 -0.5049 -0.1282 -0.4977

0.5 -0.5112 -0.0765 -0.5049

0.6 -0.5195 -0.0115 -0.5126

0.7 -0.5291 0.0705 -0.5198

0.8 -0.5353 0.1743 -0.5173

0.9 -0.5138 0.2977 -0.4743

1.0 0.0000 0.0000 0.0000

-0.1925

-0.1612

-0.1240

-0.0804

-0.0268

-0.0383

0.1172

0.2075

0.2932

0.0000
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tional term appears in the net stress intensity factor and

an analytical solution of cyclic fatigue for the indenta-

tion flaw system is not feasible. The solution needs to

be done via numerical methods, as done previously for

both dynamic and static fatigue analyses involving in-

dentation fracture mechanics [3,4]. As in the previous
studies [3,5], normalized variables are introduced here
as follows:

K*= Kl J = A O'ma x (./--,' --t; or*-- ," C*=-- (7)
KIc am o"m a m

where K*, J, a* and C* are, respectively, normalized

stress intensity factor, normalized time, normalized

maximum applied stress and normalized crack size. o-m

and am are, respectively, the strength and critical crack
size in the inert condition. Using these variables, the

crack growth rate of Eq. (1) and net stress intensity

factor are expressed as follows:

dC*

dJ - [K*]"

3 , , I C, 32
K* = _oC + _ (8)

, [-1 + R 1- Rsln__)j o'*+---5-

Note that the normalized net stress intensity factor
consists of two terms: the first is a function of the

remote applied stress and the second is related to the

residual contact stress [2,3]. The differential form of Eq.

(8) was solved numerically using a fourth-order
Runge-Kutta method. The initial condition was C* =

0.3967 at J=0 and the instability conditions were
K* = 1 and dK*/dC* > 0. The solution was initiated to

determine the normalized time to failure (Jr) as a func-

tion of normalized maximum applied stress for the

selected values of n = 5-160. This procedure was con-
tinued for the range of stress ratios from R = 0. ! to 1.0.

Since the solution is independent of frequency Or) as

long as _am/A > 2_zf, any particular values of _am/A

satisfying ¢Oam/A _>2_ can be chosen. A value of (Oam/

A = 100 was used in this analysis.

Fig. 2 shows a typical example of the normalized
time to failure as a function of normalized maximum

applied stress for stress ratios of R = 1.0, 0.5 and 0.1.

Fatigue susceptibility increases with increasing R ratio,
yielding a maximum at R = 1.0 (static fatigue). Note

that regardless of R ratio the curves converge to a* =

1.0, in which the inert strength with no slow crack

growth is defined. Similar to the previous static fatigue
analysis [4], the slope in Fig. 2 is not representative of

a 'true' fatigue parameter of n, due to the effect of

residual contact stress. The slope in Fig. 2, which is

called 'apparent' fatigue parameter (n'), was found to
have the following approximate relation

n = 4/3n' - 2/3 (9)

10 e

^S-I.DE.Ti':D 80' 'do '
._ 10 7 CRACKS 40 , 4

" 106 20 ',

10 5 10 -I

04 .._. ":. \ '

I n= 5 -.L.:.L.:.:.... "%:_.., '"%,
...... ",'::.. %,. ,,

¢_ 10 2
r_

101
=¢ 10° c,tcue F,laou_.(SmUSOID_w,vE) q
0 --R= ! .O(R'rAI"IC)
z 10 -1 ..... R=o.s

..........R-0.1 I
10 -2 , , , , , , ,, I

0.1 0.3 0.50 1

NORMALIZED MAX APPLIED STRESS, o

Fig. 2. Typical example of numerically obtained normalized failure

time (Jr) as a function of normalized maximum applied stress (o-*) for

three different R ratios of R=0.1, 0.5 and 1.0 for the indentation

flaw system.

which reduces to the relationship in static fatigue of
indentation cracks [4]. This indicates that the relation-

ship between the true (n) and apparent (n') fatigue
parameters is independent of R ratio.

Based on the results as shown in Fig. 2, the h ratio

was determined for a given R using the relation h = Jfj

Jfc ( = tf_/t,O, where J,-_ and Jfc are the normalized time

to failure corresponding to static and cyclic fatigue,

respectively. Fig. 3 shows a summary of the h ratio as
a function of n for R ratios from R = 0.1 to R = 1.0,

where log h was plotted against log n as for the natural
flaw system (Fig. 1). Again the excellent coefficients of

correlation of rco_r-> 0.9911 allow one to obtain a rela-

tionship based on Eq. (6). The results of such regression

analysis for _ and fl are shown in Table 1. The maxi-

' ' ' '1 ' .... I

R=I.O
1

o

n,,

.c

0.1

AS-INDENTED CRACKS "_

- (SINUSOIDAL WAVE)

i , A[ ..... f

10 100

FATIGUE PARAMETER, n

Fig. 3. Numerical solution of the h ratio as a function of fatigue

parameter (n) for different R ratios with the indentation flaw system.

Each line represents a best-fit regression line.
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mum error associated in the h ratio was observed to be

about 4%, occurring at R=0.9 for n > 10. Hence,

lifetime prediction of an indentation flaw system with one

fatigue loading condition can be done quickly and

accurately from another by using Eq. (6) in conjunction
with Table 1.

2.3. Evaluation oJfittigue parameters Jor indentation

f[LIWS

The "true" fatigue parameter n for both static and

cyclic fatigue can be determined using Eq. (9) once the

"apparent" fatigue parameter n' is determined from the

slope of fatigue data. The fatigue parameter A in static

fatigue was determined previously [4]

(2_']] .... 1A = -- _a,,zq,-- (10)
t.')

where 5_[is the intercept of static fatigue data, expressed

as tr_a'"= 2_. Since the following relation for the inden-

tation flaw system holds

_ " ,,, )_Jl+ tf+ z+o- --=h (ll)

where 2'< is the intercept of cyclic fatigue data as
n' " ¢trio- .... = z_. Hence, from Eqs. (10) and (11), the parame-

ter A in cyclic fatigue is obtained

t/2 _'_ 12 ,, I

A = tp_7 ) O'm(/m _,c h (12)

3. Experimental procedure

Static and cyclic fatigue tests of indented alumina (96
wt.%, ALSIMAG 614, General Electrical Ceramics)

flexure specimens were carried out in room-temperature

distilled water using a four-point bend fixture of 6.05 mm
inner and 19.05 mm outer spans. The nominal dimen-

sions of the test specimens were 4 mm by 5 mm by 25

mm, respectively, in height, width, and length. The center
(5 mm side) of each specimen was indented in air for

about 20 s using a Vickers microhardness indenter

(Zwick, model 3212, Germany) with an indentation load

of 49 N. Static fatigue testing was conducted by loading

indented specimens in a lever-arm creep machine (ATS)
with constant stress levels of 95 to 133 MPa. Cyclic

fatigue testing of indented specimens was conducted by
sinusoidal loading with a stress ratio of R = 0.5 and a

frequency of f= 5 Hz with a servohydraulic testing
machine (|nstron, Model 8562). The maximum applied

stress in cyclic fatigue ranged from 100 to 130 MPa. The

sinusoidal wave shape was frequently checked and ver-

ified by a digital storage oscilloscope.

4. Results and discussion

The results of the static and cyclic fatigue testing of

the indented 96 wt.% alumina specimens in room-tem-

129

'W

,..1

o

107 ' I '
967. ALUMINA

106 _ (as-indented;
RT water)

105 Static

n'=32.9 _ Cyclic

104 n'=35.4

103

102

• cyclic B
101 {3 static O

[3
100

10 -1 , , , , I
50 60 70 8090100 200

(MAX) APPLIED STRESS, (7 [MPa]

300

Fig. 4. Results of static and cyclic fatigue testing obtained from

indented 96 wt.% alumina flexure specimens tested in room-tempera-

lure distilled water. The solid lines represent the best-ill lines in a plot

of log t_ vs. log a,,,,_.

perature distilled water are depicted in Fig. 4. Consis-
tent with the results shown in Fig. 3, the alumina is

slightly more susceptible to fatigue in static loading

than in cyclic loading within the experimental range

used. The "apparent" fatigue parameter was obtained
from the data as n' = 32.92_+ 6.01 and 35.37 +4.79,

respectively, for static and cyclic fatigue. The corre-

sponding "true" fatigue parameter was obtained from

Eq. (9) as n =43.23 _+ 8.01 and 46.49_+ 6.39, respec-

tively, for static and cyclic fatigue• The prediction of

cyclic fatigue from static fatigue data can be done using

Eq. (6) together with Table 1. The prediction thus made

is presented in Fig. 5, where the cyclic fatigue data
obtained from the experiments are included for com-

parison. The prediction somewhat overestimates (less

_d
e_

.<

o

F

107

106

105

104

103

102

10 _

10 o

10 -1 , _ _ , I

50 60 70 80 90100 200

(MAX) APPLIED STRESS, (7 [MPa]

I

96X ALUMINA

\_ (as-indented;

_, RTwater)
Best fit_ \\"_
of .static \_'_ Best fit of

fahgue _-_"" cyclic fatigue

i_. _ Predicted

_ _".."_ (from static.
A, '_ fatigue data)

• cyclic data

300

Fig. 5. Prediction of cyclic fatigue lifetime from static fatigue data for

indented 96 wt.% alumina specimens tested in room-temperature

distilled water.
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than one order of magnitude) the actual cyclic time to
failure.

It has been reported that, for certain ceramic materi-

als, damage accumulation and/or fatigue synergisms

can be active in cyclic fatigue, resulting in more fatigue

susceptibility in cyclic than in static loading [8,13-16].

If such synergies exist or if creep at elevated tempera-

tures is simultaneous with cyclic fatigue, the analysis

given in this paper may not be valid. However, the

analysis may still provide, by comparing with experi-

mental data and by using fractographic analysis, some
clues with which the prevailing mechanism associated

with failure can be pinpointed. It should be noted that

most of glass and ceramic materials under static fatigue

loading conditions in a room-temperature moisture en-

vironment are subjected to one failure mechanism,
stress corrosion. Therefore, in view of the reasonable

agreement between the static and cyclic fatigue data
shown here, it can be stated that stress corrosion is a

governing failure mechanism, either in static or in cyclic

loading conditions. This is supported by the fact that

the material contains a large amount of glassy phase,
which is highly susceptible to stress corrosion in an

aqueous environment. The fatigue parameters for this

material system, therefore, can be obtained by using

either static or cyclic fatigue testing. In terms of testing

economy, however, static fatigue is preferred because of

the much higher testing costs associated with cyclic
fatigue testing.

As mentioned before, the analytical solution of the h

ratio for other loading functions such as trapezoidal,

triangular and square wave forms can be easily ob-

tained for the natural flaw system because of their

mathematical simplicity [1,11]. However, the conven-

tional numerical solution for these loading functions

may not be simple for the indentation flaw system,
since the functions, unlike the sinusoidal wave, are not

continuous but discontinuous in nature. In this case,

each discontinuous periodic function should be con-

verted into a continuous periodic function so that nu-

merical solution is feasible. This may be done by using

the Fourier analysis from which a discontinuous func-

tion can be approximated into a continuous function.

4. Conclusions

The ratio of static to cyclic fatigue life, or h ratio,

was obtained numerically with an emphasis on the

indentation flaw system subjected to sinusoidal loading

conditions. The h ratio decreases with increasing n and

decreasing R ratio. The solution provides a simple and

quick methodology to predict the lifetime of one fatigue
condition from another for indentation flaw systems (as

well as the natural flaw system) when the governing
failure mechanism is stress corrosion. The solution was

compared with static and cyclic fatigue data obtained

from indented 96 wt.% alumina specimens tested in

room-temperature distilled water.
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